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Abstract. A new algorithm for fast DNS cavitating flows simulations is developed. The
algorithm is based on Kim and Moin projection method form. Homogeneous mixture approach
with transport equation for vapour volume fraction is used to model cavitation and various
cavitation models can be used. Influence matrix and matrix diagonalisation technique enable
fast parallel computations.

1. Introduction
Cavitation-turbulence interactions raise many questions in cavitation research. Numerous
experiments were performed to understand them better, with numerical work following and
adding to the discoveries [1, 2].

Over the years, cavitation simulations improved significantly. Today, they are able to describe
unstable [1, 2] or even compressibility effects [3]. Presently, the mostly used cavitation models
utilise homogeneous mixture approach with incompressibly treated phases. Additional transport
equation for vapour volume fraction is often introduced. Because of many simplifications
in development of such models, and as RANS turbulence models normally accompany and
interact with them, the accuracy of simulations with them is limited. Consequently also the
possible models’ improvement and the knowledge about the mentioned interactions. To overcome
this, cavitation-turbulence interactions in such simulations should be better analysed and DNS
simulations seem a good tool for the task. There were some DNS simulations already performed,
but their objectives were different [1, 2, 3] and their algorithms accepted only certain models
[1, 2]. Therefore a new algorithm, capable of performing fast simulations with different models,
is currently developed in our laboratory.

The aim of this paper is a brief description of the new algorithm. At first, the MFLOPS-3D
code, representing a basis for our work, is described. Then, the new algorithm is presented
through the equations, which up to now offered the most stable performance. At the end, some
verification results are given.
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2. MFLOPS-3D code
As intention is to use various cavitation models in computationally heavy simulations, a
code capable of fast DNS simulations is needed. The MFLOPS-3D code performs fast DNS
incompressible flow simulations and was therefore taken as a basis for our development. Here,
a brief description of it follows and more information can be found in [4].

Governing equations solved in this code are non-dimensional Navier-Stokes continuity and
momentum equations. Non-incremental form of Kim and Moin pressure correction projection
method is used to form the algorithm. Simulations are performed in parallel, where influence
matrix technique ensures continuity of solutions over whole domain, while systems of equations in
sub domains are solved with matrix diagonalisation (eigendecomposition). As a result, the code
solves only Helmholtz or Poisson equations which have constant left hand side. Consequently
the most time consuming procedures of matrix diagonalisation and influence matrix technique
are done only once, at the start of a simulation. Only a diagonal system of equations remains
to be solved in each time step. All of this combined enables faster DNS simulations.

Code utilises structured and collocated grids. Spatial discretization is done with compact
finite differences, while time derivatives are described with 2nd order backward difference scheme
(BDS). 2nd order Adams-Bashforth scheme is used for some explicitly treated variables.

3. New alogrithm for simulations of cavitating flow
3.1. The governing equations
Description of cavitation with homogeneous mixture approach uses Navier-Stokes momentum
(1) and continuity (2) equations and transport equation (3) for vapour volume fraction α.

ρ

(
∂~u

∂t
+ (~u · ∇) ~u

)
= −∇p+∇ ·

(
µ(∇~u) + µ(∇~u)T

)
− 2

3
∇ (µ(∇ · ~u)) (1)

∂ρ

∂t
+∇ · (ρ~u) = 0 (2)

∂ρvα

∂t
+∇ · (ρvα~u) = S (3)

S in equation (3) is the source term, describing destruction or creation of α. It depends on
pressure p and α. The relationship between the density ρ and viscosity µ of the mixture and
both present phases is given in equation (4). Subscripts v and l depict vapour and liquid phase.

ρ = αρv + (1− α)ρl , µ = αµv + (1− α)µl (4)

3.2. Developed algorithm for solving presented system of governing equations
Introduction of new governing equations demanded changes to the projection method in
MFLOPS-3D code. The form of Kim and Moin method was retained, with the solution
procedures for predictor velocity ~u∗ and intermediate variable Φ heavily changed and additional
step to obtain α added. In this paper, only the most stable algorithm is described.

Firstly, ~u∗ is obtained. Equation for it is given in (5) and was, as in Kim and Moin method,
developed from equation (1) by replacing ~un+1 in time derivative and viscous terms with ~u∗ [5].

(
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2∆tµl
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2

3µn
∇µn(∇ · ~un) +
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µn
+

(
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− 3ρl

2∆tµl
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~u∗e

(5)
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Equation has many explicitly treated terms (n denotes time level and n, n− 1 use of Adams-
Bashforth scheme). To lower their amount and provide constant left hand side, Concus and
Golub method (CG) is used [6]. This gives the last term on the right hand side of equation (5)
and demands iterative steps until ~u∗ and its explicit value ~u∗e converge. Pressure term is included
as the most stable procedure is based on pressure incremental form of projection method.

Φ is solved next. Its equation is the difference between equations (1) and (5) and is given in
equation (6) in most stable form (form, with ρ included in Φ, is also possible). Solving for Φ
proved to be the most difficult part and was specially formed because of the code’s demand for
the constant left hand side. After applying divergence to equation (6), the unknown ∇ · ~u is, as
in [7], replaced with S (1/ρv − 1/ρl), where S is linearised. The best solutions are obtained if
S is linearised in regards to p and α, giving multiple terms including pressure change dp (also
used in dS/dα). dp is replaced with φ using p−Φ connection in equation (7). Finally, by using
CG method again, this leads to more implicit and stable solving for Φ. Equation for Φ solution
is given in equation (8), where σ is the constant introduced by the CG method. The equation
is solved until Φ converges.

3ρ

2∆t
(~un+1 − ~u∗) = −∇Φ (6)

pn+1 = Φ + µ

(
S

(
1

ρv
− 1

ρl

)
−∇ · ~u∗

)
+ pn (7)

(∆ + σ) Φk+1 = − 3

2∆t

(
(~uk − ~u∗) · ∇ρn +

((
Sn +

∂S

∂p
dp+

∂S

∂α
dα

)(
1

ρv
− 1

ρl

)
−∇ · ~u∗

))
+σΦk

(8)
k in equation (8) denotes iteration level. ~un+1 is updated after each solution using equation

(6). In linearised term S, only Φ values change between iterations, while S as a whole is updated
with converged Φ. Next step is the solution of α equation. This is solved in each point separately,
as it cannot be reshaped into Helmholtz equation. Equation (9), obtained from equation (3),
is used for this. Iterative steps are performed, in which αn+1 and Sn+1 are updated, k again
denotes iteration level. Finally, ρ and µ are updated using equation (4).

αn+1,k =

Sn+1,k−1

ρv
+ αn

∆t − (~un+1 · ∇)αn+1,k−1

1
∆t + Sn+1,k−1

(
1
ρv
− 1

ρl

) (9)

Boundary conditions, especially for Φ, are an important factor. For Φ, MFLOPS-3D code
originally uses von Neumann boundary conditions. These are unsuitable for cavitation as they
impose compatibility condition for Φ. Mixed boundary conditions were implemented instead,
in form of Dirichlet boundary condition as pressure value on the exit (using Φ gave unstable
simulations) and von Neumann conditions elsewhere. Boundary conditions for ~u∗ follow same
logic as those in the original code, while α demanded use of Dirichlet conditions.

4. Verification results
The algorithm was mainly tested with a verification procedure using the Method of Manufactured
Solutions [8]. Analytical equations describing the flow with variable density and corresponding
source term S were developed to see if the systems of governing equations are solved correctly.
It was found that the algorithm indeed produces correct results. To test its limits, we compared
it with an algorithm using Dirichlet boundary conditions for Φ, enabling ideal stability. It was
found out that both algorithms have same stability. The only difference was in the speed, with
the ideal conditions making the code faster by roughly 30 %.

An example of solutions, obtained with the presented algorithm, and comparison with
analytical values, is given on figure 1. In this case, the range of α was α = {0; 1} and S was
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taken as S = −ρvαp. Used domain was a cuboid with x ∈ {−0, 2; 0, 2} m, y ∈ {−0, 2; 0, 2} m
and z ∈ {−0, 1; 0, 1} m. It was split into four sub domains, two in x and two in y directions.
Grid was non-uniform with 41 points in x, y directions and 11 points in z. 1800 time steps with
increment ∆t = 0, 014 s were performed.

Figure 1. Comparison of analytical (above) and calculated (below) results for, from left to
right, u,v velocity, pressure p and α at z = 0 m.

Results show very good agreement of analytical and calculated values. This case is actually
limiting case still stably solved with described settings (coarser grid or longer time step result
in unstable simulations). Errors were estimated using time averaged L2 norm, where squares of
the differences between analytical and computed values were divided (averaged) by number of
points in the domain. Reported errors magnitudes are 10−3 for velocities, 10−1 for pressure and
10−2 for α. Convergence tests show that MFLOPS-3D code with presented algorithm can reach
2nd order accuracy. In case of incompressible flow tests (original code), a bit better convergence
is achieved, but accuracy still tends to 2nd order. This is mainly a consequence of using 2nd order
BDS for time derivatives. We therefore conclude the algorithm is ready for real flow simulations.

5. Conclusion
A new algorithm for fast DNS cavitating flow simulations is presented. The algorithm is
constructed to enable use of different cavitation models and it has proven to be able to solve the
system of governing equations correctly. The algorithm will next be tested in real flow cases,
which has not yet been done because of high CPU demands.
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