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ABSTRACT: The paper deals with the simulation of unsteady flow around jellyfish Aurelia sp. with consideration 
of the cyclic behaviour of the jellyfish bell. The bell cyclic movement was extracted from the video recordings of a 
swimming jellyfish while its displacement was simultaneously calculated from the numerically predicted forces of 
the bell on the fluid. Numerical simulation enabled us to predict the time evolution of the velocity field in the 
vicinity of the jellyfish and the formation of vortex rings that were observed during experiments. Comparison with 
experimental investigations revealed a good correlation in the flow pattern between forces and swimming velocity. 
Because of a relatively simple problem set-up the study also indicates a good possibility for further numerical studies 
of locomotion of organisms where experiments are hard or impossible to perform. Additionally a hypothesis that the 
organism uses a slightly asymmetric swimming technique to preserve a symmetric flow field was formulated. 
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1. INTRODUCTION 

Morphological characteristics affect swimming 
and foraging behaviour and Aurelia sp. has been 
classified as an oblate medusa having a rowing 
mode of propulsion and lower swimming 
performance, which create high fluid disturbance. 
Understanding the motion of Aurelia and the 
dynamics of a vortex ring is important for species 
ecology (Dabiri, Colin and Costello, 2006). 
The importance of medusae propulsion for their 
displacement (swimming) and predation has been 
recognized since the early 1970s (Gladfelter, 
1972 & 1973), and our understanding of the 
swimming and feeding of medusae has increased 
substantially in the last few decades—Mills 
(1981), Costello and Colin (1994) and Ford, 
Costello and Heilderberg (1997). Also different 
models have been developed to describe medusae 
jet propulsion (Daniel, 1983), swimming 
(Matanoski and Hood, 2006) and the generated 
flow patterns (Dabiri et al., 2005; Shaden, Dabiri 
and Marsden, 2006; Dabiri, Colin and Costello, 
2006). 
One of the obvious problems when experimenting 
with living organisms is their cooperation. It is 
extremely difficult to obtain quality experimental 
data, especially if the measurements involve 
techniques like acquisition of time dependant 
velocity field, which is essential for studying 
jellyfish locomotion—Dabiri, Colin and Costello 
(2007). The problem can be avoided by using 
computational fluid dynamics to simulate the 

situation in question. CFD is widely utilized in 
almost all technical fields but has not been used to 
simulate the flow around a swimming medusa yet. 
This is mainly because the description of the 
jellyfish bell motion in CFD was not possible 
until dynamic mesh and immersed boundary 
methods were developed to tackle the problem. 
The dynamic mesh tool is used to model flows 
where the shape of the domain is changing with 
time due to motion on the domain boundaries. 
The update of the volume mesh is handled 
automatically at each time step based on the new 
positions of the boundaries. To use the dynamic 
mesh model, one needs to provide a starting mesh 
and the description of the motion. The numerical 
simulation of dynamically updated meshes arises 
in many engineering applications like moving 
boundary problems, bio-fluid mechanics 
problems and fluid-structure interaction problems 
(Zeng and Ethier, 2005; Cavagna, Quaranta and 
Mantegazza, 2007; Tai, Liew and Zhao, 2007). 
The present paper deals with an unsteady 
simulation of the flow around jellyfish Aurelia sp. 
with consideration of the cyclic behaviour of the 
jellyfish bell. The forces generated by bell 
contraction were predicted and displacements of 
the jellyfish were calculated. Evolution of the 
velocity field around the jellyfish was predicted. 
Finally the spreading of the “numerical dye” 
injected from a determined point in space and 
time and the development of vortex rings were 
observed. A comparison of numerical predictions 
to the experimental results of the present study 
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and past studies by other authors (Dabiri, 2005; 
Shaden, Dabiri and Marsden, 2006; Dabiri, Colin 
and Costello, 2006; Franco et al., 2007) gave a 
close approximation. 
This paper describes the first study where the 
capabilities of CFD were evaluated. It is shown 
that simulations can bring a new look into the 
flow dynamics and can help significantly to 
interpret experimental results. The successfully 
finished and relatively unproblematic study shows 
good possibilities for further numerical studies of 
locomotion of organisms where experiments are 
hard or impossible to perform. 
Additionally a hypothesis was formulated that the 
jellyfish uses a slightly asymmetric stroke to keep 
the downstream wake symmetric and optimal 
from the swimming efficiency point of view. 

2. EXPERIMENT 

The main goal of the present work was to perform 
a successful simulation of jellyfish swimming. In 
order to do that, we first had to study the 
dynamics of the jellyfish bell and the general 
characteristics of the surrounding flow. 
Aurelia sp. were observed in June 2006 while 
they were swimming in a large aquarium 
(Cretaquarium, Thalassocosmos, Greece). 

Standard video recordings were made to define 
movements. Image acquisition frequency was 
25 Hz, which gives a time difference of 0.04 s 
between two successive images. 
The cycles differed in duration and varied from 
about 3.5 s to 5.5 s. For our test case a 4.16 s long 
cycle that contained the whole period (jellyfish 
bell relaxation and contraction phases) was used. 
The sequence is shown in Fig. 1 (the time 
difference between the images is 0.48 s). 
One can see that the jellyfish first starts to relax—
its bell spreads from the totally contracted 
position to totally relaxed position in about 2.6 s. 
After that a faster contraction period follows. The 
bell attains its most contracted shape in a little 
less than 1.5 s. While very small and usually 
negligible forces between the bell and the fluid 
exist during the relaxation phase, much greater 
forces that eventually lead to movement are 
present during the contraction phase. 
Maximal diameter of the jellyfish is reached in 
the relaxed position, just before the contraction 
phase begins. At that point a bell diameter of 
150 mm was estimated. 

 

 

 

Fig. 1 A sequence of images showing the relaxation and contraction of the jellyfish bell. 
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2.1 Determination of bell shape 

The bell pulsation cycle of medusa was 
determined by computer-aided visualization. The 
whole process was performed using the Matlab 
program package. Since the purpose of this part 
of the work was to determine the movement of 
the bell that was later used as an input for the 
numerical simulation, an assumption of 
symmetrical shape of the bell was made. Only the 
right side of the bell was studied further on. 
First a transformation of each video image in the 
sequence into a binary image, with the outer 
contour of the Aurelia sp. bell clearly visible, was 
made. 
The Sobel method (Sobel, 1978) for edge 
detection was used to determine the outer contour 
of the medusa bell. 
A translation of the contour was then made so that 
the bell top always remained in the origin of the 
coordinate system (x=0, y=0). This enabled a 
simpler formulation of equations of bell 
movement. Moreover it is much easier to deform 
a mesh and preserve high mesh quality later on in 
CFD when one point remains fixed at all time. 
The image resolution was 640×480 pixels so one 
half of the bell occupied about 320 pixels. The 
current position of the contour was determined for 
every 15 pixels from the centre of the image. This 
led to 23 equidistant points (given by x and y 
coordinates) that lay on the contours of the bell. 
Finally it was decided that a polynomial fit of the 
6th order is the optimal way to determine the 
equation of the contour. Polynomial fits are easy 
to use, and the 6th polynomial order gives a 
sufficient agreement and on the other hand does 
not complicate the equation with very small 
factors: 
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In order to describe the contour by a parametric 
function )(xfy =  the coordinate system had to 
be rotated for each part of the bell contour (Fig. 2).  

This way we mathematically described the shape 
of the outer contours for each bell shape in the 
sequence. 
It was recently shown by Bajcar et al. (2009) that 
the inner bell contour is dependent on the shape 
of the outer contour. A function: 

( maxxxkyy outin −⋅−=  (2) 

was used to describe it. The k gives the gradient 
at which the thickness of the bell decreases from 
the bell centre to the bell perimeter. It was also 
found by Bajcar et al. (2009) that the bell 
thickness decreases approximately linearly. Also 
the diameter of the bell changes, therefore xmax 
varies from one image to another depending on 
the current diameter of the jellyfish. 
Finally a transformation of the polynomials of the 
right contours to the symmetrical left contours 
was made. A sample image showing the left side 
of the jellyfish bell and superimposed polynomial 
functions that mathematically determine the bell 
shape are presented in Fig. 2. 
 
 

 

Fig. 2 Jellyfish image in a coordinate system with 
superimposed polynomial functions. 

One cycle of bell relaxation and contraction was 
eventually split into 52 steps of 0.08 s each. For 
every single step 4 polynomials were used to 
determine the bell shape—one for every part of 
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where a6 , a5 , a4 , a3 , a2 , a1 , a0 and k are time dependent variables and d, the maximal thickness of the bell, is 
constant. One can see that polynomials 3 and 4 describe the inner contour of the bell. Because the thickness 
of the bell decreases linearly with k, the rate at which the bell thickness decreases towards the 
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perimeter of the bell is present in the linear term 
of the polynomial. d gives the maximal thickness 
of the bell and remains constant for all images—it 
is therefore included at the constant term of the 
polynomial. 

2.2 Characteristics of the flow around the 
jellyfish 

For numerical simulation, flow characteristics 
around the body of the jellyfish have to be 
considered. 
To determine whether the flow is laminar or 
turbulent, which consequently leads to the choice 
of the model that we use for the simulation, the 
Reynolds number has to be determined: 

μ

xρv max2
Re

⋅⋅
=  (7) 

While the characteristic size xmax , the jellyfish 

directly since there was no reference point in the 
image that did not change its position. 
In our case the jellyfish swam at a relatively low 
pace so an assumption was made that the inertia is 
small and that consequently the bell progresses 
for the same distance as its height increases 
during the contraction phase. In other words, the 
jellyfish remains at a standstill during the 
relaxation phase and the margin of the bell holds 
its position while the bell apex progresses during 
the contraction phase (Fig. 3a). Since the time 
difference Δt and the displacement Δy were 
known, the velocity (Δy/Δt) and consequently Re 
number could be estimated. Figure 3b shows the 
approximate time evolution of the Reynolds 
number during one cycle of bell relaxation and 
bell contraction. 

 

velocity have to be estimated from the images—
the position of the camera was not constant so the 
velocity of swimming could not be determined 

bell radius, and the fluid viscosity are known, the 
 

 

Fig. 3 (a) Method of estimating the velocity of swimming and (b) the Re number evolution. 

 
It can be seen that the estimation shows that the 
Re number does not exceed a value of 5000. It 
would be therefore incorrect to assign a fully 
developed turbulent flow regime. The Re number 
also varies significantly in time, from fully 
laminar to partially turbulent flow. Moreover the 
assumption that the bottom of the jellyfish bell 
holds its position during the contraction phase is 
not entirely correct but we are on the safe side—
the bottom of the jellyfish must also move 
downwards during relaxation so that the actual 
velocity change is smaller than what is estimated. 
In comparison Ichikawa, Yazaki and Mochizuki, 
(2006) experimentally studied the flow around 
Aurelia sp in detail and estimated that the flow 
does not develop turbulent characteristics. They 
reported that the average Reynolds number 
reaches up to a value of 680. 

stated reasons, a simulation with laminar flow 
assumption is to be performed. 

3. NUMERICAL SIMULATION 

A program package Fluent 6.2.16 was used to 
calculate the flow around the jellyfish. It solves a 
set of time dependent Navier-Stokes equations in 
a conservative form. The numerical model uses an 
implicit finite volume scheme, based on the 
SIMPLE algorithm (Patankar, 1980). A 1st order 
implicit temporal discretization and 2nd order 
upwind differentiating scheme were used. In the 
present study the numerical problem was treated 
as a 2-dimensional problem. 

It was concluded that on the basis of the above 
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3.1 Basic equations of fluid dynamics in 
moving grids 

By adopting the laminar flow characteristics no 
averaging of the basic Navier-Stokes equations 
needs to be performed. Moreover the fluid (sea 

ρ0 , 

tion of deforming a domain, however, 

d velocity is used for the 

water) can be considered incompressible ρ=
which further on simplifies the set of equations. 
Considera
requires a slight modification of the equations 
where the difference between the flow velocity 
and the gri  uu vv − g

convective terms. 
If an incompressible fluid is considered, the mass 
and the momentum conservation equations that 
form a closed system of equations read: 

( ) 0=−⋅∇ guu
vv  (8) 

and 

( )[ ] ( )uνpuuuu
g

vvvv
ρt

v

∇⋅∇+∇−=−⋅∇+∂
0

1  (9) 
∂ 0

3.2 Dynamic mesh update methods 

First the domain with an initial geometry was 
manually meshed. The initial computational 
domain extended 1 by 1 m at the centre of which 
was the contour of the jellyfish in a totally 
contracted position (Fig. 4). 
 
 

 

Fig. 4 Initial computational domain with mesh and 
boundary conditions. 

The mesh consisted of about 17000 nodes that 
defined the triangular elements. The size of 
elements had to be adjusted according to minimal 
discretization error on one hand and by so doing 
to avoid problems at mesh updating on the other. 
To check the influence of spatial discretization, a 
study of the discretization error on the basis of the 
Richardson extrapolation (Ferziger and Perić, 
1999) was made. An error of 0.9 % was estimated. 

The choice of the length of the time step can be 
influential to the result and the stability of 
simulation. From previous investigations dealing 
with complex time dependent flow structures 
(Dular et al., 2005) we concluded that at least 40 

ined for each time step during 
the simulation. It was determined that the mesh 
first deteriorates from the initially low value of 
maximal cell equiangle skew but then, despite the 
large deformation of the domain, preserves a still 
plausible value of cell equiangle skew <0.7. 

3.3 Boundary conditions 

Translation of the jellyfish was treated from a 
relative point of view. At the end of every time 
step the forces of the jellyfish on the fluid or vice 
versa were calculated. When the forces were 
known, the acceleration and finally flow velocity 
at the inlet into the computational domain for the 
next time step could be calculated using: 

to 50 time steps per cycle must be used to avoid 
adverse impact on results, to work with 
reasonable computational time and to retain stable 
simulation. Eventually, 52 time steps of 0.08 s 
each were used to describe one cycle—the same 
number as the number of images that captured 
one cycle of jellyfish movement in the experiment. 
As time progresses the jellyfish periodically 
changes its shape. To follow this movement the 
mesh must constantly (at each time step) be 
updated. In our case smoothing and local 
remeshing techniques were applied (Batina, 1990). 
To test the quality and the robustness of the mesh 
update method, maximal cell equiangle skew 
value was determ

t
m

F
)tt(v)t(v i

i

ΔΔ ⋅+−=
∑

 (10) 

where the force component along the specified 
vector av  on a wall zone i is computed by 
summing the dot product of the pressure and 

e specified 
s estimated 

ain had a free slip 
boundary condition applied. The values 

viscous forces on each face with th
vector. The mass of the jellyfish wa
according to its volume, which is constant in time, 
and the fact that it consists of almost 100% water. 
This method is not entirely correct since forces 
from a previous time step are used to determine 
the velocity in the next time step, but since the 
time steps were sufficiently short, the error made 
can be considered negligible. Also a possibility of 
reverse flow was considered in the case of which 
the inlet and the outlet boundary conditions 
swapped places. 
The side walls of the dom
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ρ=1025 kgm-3 and μ=10-3 Pa s for sea w
density and dyn

ater 
amical viscosity were used for the 

simulation. 

3.4 Calculation procedure 

Fig. 5 shows the steps taken during the 
calculation. 
 

 

Fig. 5 Solution algorithm. 

The solution algorithm solves the governing 
equations sequentially. Because the governing 
equations are non-linear (and coupled), several 
iterations of the solution loop must be performed 
before a converged solution is obtained. The 
solution procedure follows the steps illustrated in 
Fig. 6 and is outlined below: 

1. Fluid properties are updated, based on th

 
on the initialized solution. 

tep. 
d time step solution 
on of static pressure 

. Finally 
a convergence criterion of 10  was used to 
minimise iteration error but not to ad
extend computational time
0.05% was estimated according to Ferziger and 

as found in all cases, which 

e 
current solution. If the calculation has just 
begun, the fluid properties are updated based

2. Each of the momentum equations is solved in 
turn using current values for pressure and face 
mass fluxes, in order to update the velocity 
field. 

3. Since the velocities obtained in the second 
step may not satisfy the continuity equation 
locally, an equation for the pressure 
correction is derived from the continuity 
equation and the linearized momentum 

equations. This pressure correction equation 
is then solved to obtain the necessary 
corrections to the pressure and velocity fields 
and the face mass fluxes such that continuity 
is satisfied. 

A check for convergence of the equation set is 
made. If the convergence criteria are not met, 
steps 1 to 3 are continued until convergence is 
obtained. 

4. Resultant of the forces of fluid on the body or 
vice versa is calculated. Using Eq. (10) 
acceleration and consequently the body 
velocity are calculated. 

5. The time is updated to t=t+Δt. 

6. A new geometry of the body is calculated 
according to Eqs. (3) to (6) and the boundary 
conditions are updated—new inlet velocity is 
set according to the result of Eq. (10). 

7. Mesh is updated. 

8. An iteration procedure for the new time step 
begins. 

These steps are continued until the last time s
The criterion for a converge
was determined by observati
at the inlet of the computational domain. Within 
one time step the value of static pressure always 
converged when the sum of the residuals 
decreased by 3 orders of magnitude. We 
additionally compared solutions at different 
convergence criteria (5×10-4 and 5×10-5) but 
found no significant difference in results

-4

ditionally 
. The iteration error of 

Perić (1999). Approximately 40 iterations per 
time step were needed to obtain a converged time 
step solution. 

4. RESULTS 

Results of simulation were compared to the 
results of previous experiments done by other 
authors. The results of numerical simulation and 
experimental results cannot be compared 
quantitatively, since the “experimental” and 
“numerical” jellyfish differed in size and cycle 
length. The jellyfish species was the same in all 
cases—Aurelia sp. Nevertheless a good 
approximation w
points to the significant potential of using 

263 



Engineering Applications of Computational Fluid Mechanics Vol. 3, No. 2 (2009) 

numerical simulations for easier and more  
in-depth interpretation of organism locomotorics. 

4.1 Propulsion forces 

rs that are close to 

e fluid applied by the organism. 
ifferent methods were described by Usherwood 

et al. (2007), Dabiri (2005) and Peng et al. (2007) 
but they are either indirect or not applicable to 
jellyfish. 
In computational fluid dynamics this problem can 
be easily avoided. The pressure field is known at 
every time the force can be easily deducted. 
Figure 6 shows the time evolution of the forces on 
the fluid. 
 
 

 in the direction 

y averaging 10 sequential time 

ntioned that the actual jellyfish 

tion of the numerical simulation the 

 the determination of 
ll apex was 

of the 
n of time can be seen in 

One of the obvious paramete
impossible to determine experimentally is the 
force on th
D

 

Fig. 6 Time evolution of the force during several 
cycles. 

The jellyfish contracted and relaxed 
symmetrically so the sum of forces applied in the 
perpendicular direction to the flow is equal to 
zero. 
It can be seen that the force
parallel to the jellyfish motion oscillates quite a 
lot, but generally the evolution follows a pattern 
plotted in the bottom diagram (Fig. 6b), which 
was generated b
steps in a package (moving average technique). 
Although it is hard to distinguish any periodic 
nature in Fig. 6, we can claim that in general the 
force is negative during the relaxation phase, 
which forces the jellyfish downwards and 

increases rapidly during the contraction phase, 
which results in forward movement. 

4.2 Jellyfish displacement 

We already me
displacement could not be measured during the 
present experiment since the camera moved and 
no stationary reference point could be determined. 
For evalua
actual jellyfish displacement was determined on 
the basis of a movie made by Shadden, Dabiri and 
Marsden (2006). During that experiment the 
camera remained at a determined position while 
the jellyfish swam by it, so
the displacement was trivial. Be
chosen as a reference point of the jellyfish, so its 
distance from the reference point was measured 
for each image. The uncertainty of this method is 
relatively high since the resolution of the images 
was low. The measured displacement 
jellyfish as a functio
Fig. 7. 
 
 

 

Fig. 7 Measured jellyfish displacement (on the basis 
of a movie by Shadden, Dabiri and Marsden 
(2006)). 

It was expected that the jellyfish progresses in a 
distinctive stair-like manner. It remains at a 
standstill during the relaxation phase and moves 
rapidly during the contraction phase. In each bell 

sses for approximately 0.021 m. 
ocity is achieved in the middle of 

stroke it progre
The maximal vel
the contraction phase when the bell apex reaches 
up to 0.027 ms-1. 
The cycle length of the jellyfish differs from 
4.16 s for the case of “numerical” jellyfish to 
about 2.3 s for the case of “experimental” 
jellyfish. Similarly the diameter of the totally 
relaxed “numerical” jellyfish is 150 mm while the 
“experimental” jellyfish stretches itself only to 
about 110 mm. Figure 8 shows the numerically 
predicted jellyfish displacement. 
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Fig. 8 Numerically predicted jellyfish displacement. 

The simulation correctly predicted the manner by 

or in some cases even regressed 
ightly. During contraction it moves rapidly 
rward. On the other hand the simulation 

predicted that the jellyfish swims at a much faster 
pace. It is predicted that the bell progresses for 
about 0.1 m during each cycle and that it reaches 
a maximal velocity of 0.075 ms-1. It is hard to 
compare the quantitative results since we are in 
fact dealing with two individual organisms—it is 
known that the jellyfish can move in a vast span 
of velocities—see for example, Dabiri, Colin and 
Costello (2007). It can be concluded that the 
simulation is in a decent agreement with a real 
situation in nature, but probably a much more 
advanced experiment will have to be performed to 
either confirm or reject this statement. 

4.3 Velocity field 

Data from measurements by Franco et al. (2007) 
were used to evaluate the numerical simulation. 
The velocity field in the vicinity of the jellyfish 
was measured using the PIV technique (Particle 
Im V
approxim  
relaxed position and the length of one cycle was 

e contraction 
phase (right), seems to be similar but is in fact 

ow is driven to the 

which the jellyfish progresses. The qualitative 
resemblance between the experimental and 
numerical results is clearly seen. It is predicted 
that the bell remains almost at rest during 
relaxation 
sl
fo

age elocimetry). The jellyfish measured 
ately 100 mm in diameter in its totally

about 5 s. 
The two vector plots in Fig. 9 show the velocity 
field at different instants during the relaxation 
phase (left) and the contraction phase (right). The 
bottom two schemes show the approximate flow 
directions for the situations above. 
During the relaxation phase a clear recirculation 
of the flow can be seen. As the jellyfish relaxes a 
low pressure region develops inside the bell and 
sucks the fluid from the outside. One can see that, 
since the bell is slowly stretching outwards, the 
flow on the outside is not directly influenced and 
it changes direction (towards the bell centre) only 
after it passes about 10 mm downstream of the 
bell margin. This flow pattern is practically the 

same for the whole period of bell relaxation. 
The velocity field recorded during th

different. Inside the bell the fl
centre not by the pressure difference but directly 
due to the force applied at the contraction. On the 
outside of the bell the rapid contraction creates a 
low pressure field in the vicinity of the bell which 
causes the flow to follow the bell movement. 
Because of that the change of the flow direction 
occurs more upstream than during the relaxation 
(about 15 mm before the bell margin). A close 
inspection also reveals that as flow from opposing 
sides collides downstream of the jellyfish, two 
new vortices are created. These have an opposite 
direction to that of the vortices near the bell 
margin. A more thorough study of these results 
was conducted by Dabri et al. (2005). 
 

 
Fig. 9 Measured velocity fields at different times 

during swimming cycle (Franco et al., 2007). 

Figure 10 shows sequence of numerically 
predicted velocity fields at different times in the 
cycle. 
One cycle with the relaxation and the contraction 
phases are shown. As the bell relaxes, the flow is 
sucked from the vicinity of the jellyfish into its 
bell. This results in a formation of a distinctive 
vortex that can be well seen. The vortices 
continue growing until the bell relaxes. As the 
contraction part of the cycle begins at t=2.88 s the 
fluid is submitted to a force that pushes the 
vortices downstream. One can also see that the 
primary vortices (generated during bell relaxation) 

eteriorate in size, which is a rd
w

esult of pairing 
ith counter rotating vortices that are generated 

during the bell contraction phase (t=3.84 s). 
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 at different times in swimming cycle. 

Path of numerical dye 

The experiment in Fig. 11 was conducted by 
Dabiri et al. (2005) where a small quantity of 
fluorescent dye was injected into the water 
surrounding the animal. The diameter of the 
totally relaxed jellyfish was approximately 
200 mm while the cycle length lasted about 2.6 s. 

Fig. 10 Numerically predicted velocity fields

 
As the bell contracts the fluid is squished from the 
inside resulting in a force that triggers movement. 
As the flow travels downstream it loses its 
momentum and starts to decelerate and form a 
vortex that has the opposite rotation as the one 
that is formed by bell relaxation. 
4.4 
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Fig. 11 Dye visualization of jellyfish 
vortex wake (Dabiri et al., 
2005). 

 

 

Fig. 12 Numerically predicted 
evolution of the vortex street.

 
 
As shown in the images the dye was injected 
upstream of the animal to observe the fluid 
motion induced by the animal as it swam forward. 
The formation of a vortex ring is observed as the 
animal contracts its body. A second vortex ring of 
opposite rotatio
relaxes to its original resting form

e two vortex rings pair together and develop 

the 
jellyfish. Dye was injected near the left side of the 

bell perimeter. As time progresses the 
concentration of the dye lowers and the colour 
scale is adjusted—this is why the dye becomes 
visible also on the right side of the jellyfish bell. 
The jellyfish starts its cycle in a totally contracted 

ll amount of 

left side. It can be seen that as the jellyfish relaxes 
l forming a vortex. 

e is pushed out 

nal sense forms as the animal 
. Subsequently, 

phase. At this instant a sma
“numerical dye” was placed above the bell on the 

th
instabilities as they propagate downstream (Dabiri 
et al., 2005). 
The initial position time instant at which the 
“numerical dye” was released was selected to 
resemble the position and the time of injection in 
the experiment. Figure 12 shows the numerically 
predicted evolution of the vortex street behind 

the dye is sucked into the bel
As the bell starts to contract, the dy
and flows downstream of the jellyfish. When the 
jet losses its momentum, it creates a secondary 
vortex of an opposite sense of rotation. The 
simulation obviously corresponds well to the real 
situation. 
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After some periods the first sign of asymmetric 
flow pattern becomes visible. Later, a clear 
oscillating vortex street forms. This was not 
observed in the experiment and is probably 
caused by a simplification where an assumption 
of axisymmetric bell movement was made. This 
aspect is more thoroughly discussed in the next 
section of this paper. 

5. DISCUSSION 

It is of great importance to discuss the evolution 
of the oscillating vortex street during the 
simulation. This is obviously not in agreement 
with experimental measurements where no such 
asymmetry was observed. Figure 13, for example, 
shows an image where vortices from 5 periods of 
jellyfish contraction/relaxation are seen. 
 

 

Fig. 13 Symmetric vortex street after 5 jellyfish 
contraction/relaxation phases (Dabiri et al., 
2005). 

The hypothesis is that the jellyfish probably 
contracts and relaxes its bell slightly 
symmetrically to compensate for the 
evelopment of the asymmetrical vortex street, 

n our case the simulation is valid for 

6. CONCLUSIONS 

The main purpose of this work was to evaluate 
the capability of numerical simulation and the 
first step towards in-depth numerical 
investigations of the flow in the vicinity of living 
organisms. It was shown that computational fluid 
dynamics coupled with not too complex methods 
of computer aided visualization can be a useful 
tool for studying complex flow around living 
organisms. It is particularly useful in cases where 
advanced experiments are expensive and hard to 
perform (like velocity measurements with PIV 
method). 
It was concluded, on the basis of good qualitative 
correlation  
experiments, that the for 
simulation of such problems. 
The agreement between experiments and 
simulation was fair for the case of predicting 
jellyfish displacement evolution, velocity field 
and the wake when only a few periods are 
considered. The numerical simulation also helped 
to formulate a hypothesis that the jellyfish has to 
make small corrections in the otherwise 
symmetric contraction/relaxation motion to 
preserve the symmetric wake. 
The next step is to upgrade the simulation to a  
3-dimensional problem and to include the 
asymmetric motion of the bell to further 
investigate the possible presence of asymmetry. 
The final goal would be to include fluid structure 
interaction into account, but this would mean that 
the muscular and tissue properties of the jellyfish 
should be known—this is at the present time 
beyond the sc

NOMENCLATURE 

a , a , a , 

Φ source of arbitrary variable (-) 

a
d
which is from the swimming point of view less 
efficient and not stable. 
In simulation vortices begin to shift alternatively 
from side to side. The differences are small and 
the effect cannot be seen at first, but as time 
passes the small differences grow and eventually 
a significant asymmetry develops as seen in 
Fig. 12. This means that it is only possible to use 
such simulations for predicting short term 
phenomena. I
all studied parameters except the evolving wake 
behind the bell of the jellyfish—and even that if 
we consider only 4 or 5 cycles when the 
asymmetry is still insignificant. 

6 5 4
a3 , a2 , a1 , 
a0 

constants in the polynomial equation 
(-) 

d thickness of bell core (m) 

between the predictions and
 numerical tools are ripe 

ope of simulations. 

Fi force (N) 
G, Gx, Gy gradients in the image (pixel 

value/pixel) 
k constant (-) 
kij grid spring constant (N/m) 
m mass (kg) 
p pressure (Pa) 
qe equiangular cell angle (°) 
qmax maximal cell angle (°) 
qmin minimal cell angel (°) 
Re Reynolds number (-) 
S  

268 



Engineering Applications of Computational Fluid Mechanics Vol. 3, No. 2 (2009) 

t time (s) 
u local velocity (ms-1) 
ug grid velocity (ms-1) 
v integral velocity (ms-1) 
x coordinate (m) 
xi grid deformation (m) 
xj grid deformation (m) 
xmax maximal radius of jellyfish (m) 
y coordinate (m) 

es of the inner and outer bell 
contour (m) 

0
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