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Abstract 
Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has 
been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very 
strong, and the tip can be covered entirely by the gas/vapour phase for longer time intervals. A peculiar 
dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency 
in the subharmonic range, i.e. below the acoustic driving frequency. The term “acoustic 
supercavitation” was proposed for this type of cavitation [1].  
We tested several established hydrodynamic cavitation models on this problem, but none of them was 
able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation 
problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation 
modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison 
with measurements of acoustic supercavitation at an ultrasonic horn of 20 kHz frequency revealed a 
good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations.  
The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly 
fluctuating driving pressure fields.  
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List of symbols 
Cdest coefficient of vapour destruction 
Cprod coefficient of vapour production 
fg non-condensable gas mass fraction 
fv vapour mass fraction 
k turbulent kinetic energy 
n0 bubble number density 
R bubble radius 
R0 initial bubble radius 
Sdest source term of vapour destruction 
Sprod source term of vapour production 
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pg0 initial gas pressure 
pv vapour pressure 
p∞ pressure in far field 
Tb bubble temperature 
T∞ temperature in far field 
t∞ mean flow time scale  
u velocity 
ug grid velocity 
umo modified velocity 
uor original velocity 
u∞ velocity in far field 
α volume fraction 
αl liquid volume fraction 
αnuc nucleation site volume fraction 
αv vapour volume fraction 
∆t length of a time step 
µ dynamic viscosity 
ρl liquid density 
ρm mixture density 
ρv vapour density 
σ  surface tension 
Φ  general scalar 
 
 
1 Introduction 
Cavitation occurs in very different situations and is denoted as the process of a breakdown of a 
homogeneous liquid medium under very low pressures and a consequent collapse of vapour bubbles 
when the pressure is elevated. In liquid flows, this phase change is generally due to local high 
velocities which induce low pressures. The liquid medium is then "broken" at one or several points and 
"voids" appear, whose shape depends strongly on the structure of the flow. However, cavitation can 
also occur in a static or nearly static liquid. When an oscillating pressure field is applied over the free 
surface of a liquid contained in a reservoir, cavitation bubbles may appear within the liquid bulk if the 
oscillation amplitude is large enough. This type of cavitation is known as acoustic cavitation [2]. 
 
Numerical simulation of cavitating flows and specifically the development of phase change models has 
received enormous attention from researchers during the last years. Early studies, that primarily utilized 
the potential flow theory, are still widely used in engineering applications. Most of the codes treat the 
two phase flow as a single vapour-liquid phase mixture flow. An exception is for example a numerical 
study of cavitating flow in the nozzle performed by Alajbegovic et al. [3], where each phase was 
separately modeled.  
 
In the simplest approach it is assumed that the flow is seeded by cavitation nuclei. Usually a simplified 
Rayleigh-Plesset equation is used to determine the change in bubble size and consequently the mixture 
density in each computational cell. The advantage of this formulation is that it follows, to some part, a 
physical law. However one neglects the hydrodynamics of the vapour phase and overpredicts the 
vapour volume fraction – especially in cases of cloud cavitation. This approach was first introduced by 
Kubota et al. [4] who used the linear part in the Rayleigh-Plesset equation to describe the evolution of 
bubble radius as a function of the surrounding pressure.  
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A different approach was proposed by several authors [5-13] in form of essentially the same transport 
equation models. In their approach volume or mass fraction of liquid (and vapour) phase is convected. 
This method has the advantage that it can take into account the time influence on the mass transfer 
phenomena through empirical laws for the source term. One clear advantage of models from this family 
comes from the convective character of the equation that allows modeling of the impact of inertial 
forces on cavities like elongation, detachment and drift of bubbles.  
 
Another way to model cavitation processes is by the so called barotropic state law that links the density 
of vapour-liquid mixture to the local static pressure. The model was proposed by Delannoy & Kueny 
[14] and later widely used by others [15-18]. The results obtained with the barotropic cavitation model 
show very good correlation to the experiments but past simulations lacked robustness of numerical 
algorithms, which resulted in numerical instability and sometimes in poor convergence.  
 
All of the mentioned models were developed and compared with experiments on hydrodynamic 
cavitation, where very rapid driving pressure changes are unlikely to occur. This is quite different in 
acoustic cavitation, where bubble growth and collapse are driven by ultrasound (>20kHz) and the 
driving pressure switches from positive to negative values periodically in a matter of microseconds. 
Additionally to the faster excitation pressure time scales, other essential differences occur for 
acoustically driven as compared to hydrodynamically driven cavitation: bubbles can show longer life 
time in terms of collapse cycles (up to hundreds), and they are re-circulated. Both leads, together with 
acoustic bubble-bubble interaction, to characteristic structure formation [19-21]. Furthermore, the 
bubble distribution acts back on the driving pressure wave by acoustic impedance change of the two 
phase medium - a phenomenon that typically does not play a role in hydrodynamic cavitation problems. 
For these reasons, the models for numerical simulation of acoustic cavitation are rather distinct from 
the hydrodynamic codes mentioned above. They traditionally split into "continuum models" and 
"particle models". The former focus on the acoustic wave propagation in bubbly (cavitating) liquids 
and couple the gas/vapour resp. bubble density, which is given by a continuous field variable in space 
and time, to the acoustic pressure amplitude [19, 22-26]. The latter resolve the bubble population into 
individual bubbles ("particles") and focus on their dynamics, motion and re-distribution driven by the 
sound wave and acoustic forces [27, 28]. Recently, also hybrid forms and combinations of the two 
model types have been proposed [29-31]. Nevertheless, the development of simulation codes of 
acoustic cavitation with sufficient predictive power is still ongoing; see e.g. [32].  
 
Yet, the standard acoustic cavitation model approaches prove inefficient in cases were acoustic 
cavitation resembles the hydrodynamic one – with large coherent gas/vapour structures. Then the 
notion of "bubbly liquid" or individually acting bubbles in a cloud or streamer is not appropriate. 
Likewise, hydrodynamic models can fail to accurately reproduce acoustically driven cavitation due to 
the high frequency of the pressure fields.  In the following we focus on a peculiar case which appears 
somehow intermediate between hydrodynamic and acoustic cavitation, namely a large cavity attached 
to an ultrasonic horn tip and collapsing with its self-generated subharmonic cycle frequency ("acoustic 
supercavitation"). Here we report that several standard hydrodynamic codes were not able to reproduce 
the experimental observations, but that a suitable extension of the vapour source term removes the 
deficiencies and leads to a convincing simulation result by the new code. 
 
2 Problem Statement and Conventional Simulation 
Ultrasonic horn transducers are frequently used in applications like ultrasonic homogenization, 
sonochemical reactions, milling, emulsification, spraying and cell disruption (the applications of 
acoustic cavitation go even further – for example water purification, surface cleaning and lithotripsy). 
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They are operated typically in the frequency range up to about 50 kHz and have tip diameters from 
some mm to several cm. It has been observed that if the horn tip is sufficiently small and driven at high 
amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapour phase for 
longer time intervals.  In Fig. 1 an acoustic horn emitter of small diameter (3 mm) and oscillation 
amplitude of 164 µm at 20 kHz is shown for several representative cycles. A large single cavity of a 
large extension occurs at the tip, while a cloud of individual bubbles is seen below. In this condition, 
the horn tip is working most of the time against gas and only in short intervals against liquid. The large 
attached cavity is undergoing a characteristic "mushroom" shape oscillation with strong collapse. It is 
generating its own oscillation frequency which is smaller than the driving and thus falls into the 
subharmonic range of the excitation frequency f0 (for instance somewhere between f0/6 to f0/4). The 
subharmonic acoustic emission generated by the large bubble can be even more pronounced in an 
acoustic power spectrum than the primary wave [33]. 
 
It was suggested by the present authors [1] to term the observed phenomenon of attached cavities partly 
covering the full horn tip as “acoustic supercavitation”. This reflects the conjecture that not the sound 
field in terms of acoustic (negative) pressure in the bulk liquid is responsible for nucleation, but the 
rapid motion of the transducer surface. 
 
As already mentioned, modeling of such a phenomenon by a “conventional” hydrodynamic cavitation 
model, which would be a reasonable choice of an approach, results in poor accuracy. As an example, in 
Fig. 2 modeling by the Schnerr-Sauer model [12] is shown. Other models [6, 9, 11] were tested with the 
similar result to fail in predicting the low frequency oscillation of the large attached cavity and its 
extent.  
 
One can see that the Schnerr-Sauer model predicts a cavity of a significantly smaller size (compared to 
the one in Fig. 1), which additionally follows quite periodically the driving frequency of the horn (20 
kHz, duration of a period is 50 µs). While indeed a cavity at the tip is reproduced, essentials like the 
cavity's (subharmonic) dynamics and its correct size are clearly missed. 
 
In the next Section we first investigate the background in development of a cavitation model. Then, 
also based on our experimental observations (more thoroughly discussed in [1]), we build a new, more 
detailed model, which does not neglect the second derivatives in the Rayleigh-Plesset equation as 
previous models.  
Finally, in Sec. 4 we employ the new model for the acoustic supercavitation problem. Comparisons 
reveal a good agreement with the measurements of the intense cavitating flow in the vicinity of the 
ultrasonic horn transducer tip.  

 
3 Development of Cavitation Model 
The most commonly used approach to the modeling of hydrodynamic cavitation employs the transport 
equation for the vapour phase with (semi-)empirically derived source terms for the description of 
vapour generation and destruction. There exist several variants with only slightly different relationships 
(Tab 1).  
One needs to bare in mind that the constants included in the models (Cdest and Cprod) are not necessarily 
the same and were fine tuned for each model on specific experimental results. All models presented in 
Tab. 1 use some kind of pressure dependent source terms to describe the evaporation and condensation 
processes. For the cases where the Weber umber is low (in the present case We ≈ 0.01) it is only logical 
to use a part of the Rayleigh-Plesset equation for this purpose as it is physically related to the spherical 
bubble dynamics and it was proven many times to be an effective way of modeling cavitation. The 
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terms with the square root in Tab. 1 stem from an approximate solution for bubble expansion or 
collapse: 
 

( )| |
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This "Rayleigh solution" (Eqn. 1) is obtained by neglecting several terms of the general Rayleigh-
Plesset equation (the term is considered positive (+) for evaporation when the ambient pressure p∞ is 
lower than the vapour pressure pv and negative (-) in the case of condensation). Based on our 
observations [1] we concluded that it is probably this oversimplification that leads to the poor 
prediction of the dynamics of the cavitation at the ultrasonic horn by the present models [6, 9, 11, 12].  
The main task is therefore the determination of the terms in the Rayleigh-Plesset equation, which 
cannot be neglected if one wants to correctly predict the cavitation dynamics in a rapidly changing 
pressure field.   
It seems that Kanfoudi at al. [34] already approached this idea, however they did not consider the 
possibility of applying it to rapidly changing pressure fields and had to significantly alter the model 
constants to obtain agreement with experimental results. This points to another possible reason for poor 
performance of the existing models (Tab. 1) – they all consider a relatively large scale of the cavity 
whereas we are dealing with small scale vapour structures. As mentioned in [35] this could result in 
issues of dynamic similarity and scale effects by the model constants – however for the present case 
this is unlikely as our sensitivity study showed marginal influence of the model constants values.  
 
3.1 The Schnerr - Sauer model 
Based on our positive previous experience and experimental data (shown later in Sec. 3.2.1) we 
decided to build a new code on the foundations of the Schnerr-Sauer model [12] which utilizes the 
homogenous mixture approach to model cavitation – of course one could apply the presented approach 
also to any other model from the family above. A transport equation for vapour volume fraction is 
solved in order to determine the density of the liquid-vapour mixture: 
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where S represents the source term, which describes creation or destruction of vapour. A relatively 
straightforward derivation [12] leads to the formulation of the already given source term: 
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where dR/dt denotes the velocity of a spherical bubble surface, representing bubble growth. At this 
point cavitation models [9-12] utilize the Rayleigh solution (Eqn. 1). As already mentioned this is not 
appropriate in the case of rapidly changing pressure fields, and hence we propose to replace it with the 
equation of bubble growth velocity based on the simplified Rayleigh-Plesset equation derived in the 
following section.  
 
3.2  Simplyfing the Rayleigh - Plesset equation 
The general Rayleigh-Plesset equation can be written as [2]: 
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Here the first term represents the pressure difference between the vaporization pressure at T∞  and the 
pressure in the vicinity of the bubble. The second and third terms describe the influence of the 
temperature and gases inside the bubble. The inertial effects are given by the fourth and the fifth term, 
while terms 6 and 7 depict the influence of surface tension and liquid viscosity, respectively.  
 
As one can see, the Rayleigh solution (Eqn. 1) of the given equation follows the neglect of all terms 
except the first one and the velocity part of the inertial term (term 5 in Eqn. 4). This is appropriate 
when one has to deal with hydrodynamic cavitation at “usual” flow conditions (water as liquid at 
approximately 20°C), as the thermal, gaseous, surface tension and viscous influences are negligible 
compared to the pressure difference [36]. Further on, the acceleration term can also be neglected as the 
typical time discretization scale in such simulations is relatively long, and the acceleration to the 
asymptotic velocity of the bubble growth takes only a short period of time. This is typically shorter 
than 10-4 s and decreases with the increase of the pressure difference between bubble inner and 
surrounding pressure [36]. Although the same cannot be said in the case of bubble collapse, the 
Rayleigh solution provides satisfactory approximation for this period of bubble dynamics in 
hydrodynamic cavitation as well [36]. 
 
To determine which terms cannot be neglected in our particular case (or in a general case with steep 
pressure gradients), different aspects need to be considered. Firstly, as this cavitation has both acoustic 
and hydrodynamic characteristics (cavitation is driven by acoustical waves, but resembles 
hydrodynamic cavitating flow [1]), the influence of liquid and gaseous variables have to be reassessed. 
This was done experimentally. Only the main results and conclusions of the experimental campaign are 
given in the present manuscript – for a more detailed description of the experimental work and an 
extensive discussion on the physics of the cavitating flow near the small ultrasonic horn we refer to [1].  
 
3.2.1 Experiments 
The cavitation was produced by an ultrasonic horn transducer (Bandelin HD 2070) with a tip diameter 
of 3 mm, which was submerged vertically into a 125 ml glass cuvette. The horn was submerged 1 cm 
deep into the water, 3 cm from the bottom of the cell. 
A high-speed camera (Photron FASTCAM SA5 model 1000K-M1) was used for observation of 
cavitation from the side at 100000 frames per second, and simultaneously the acoustic pressure was 
measured by a hydrophone (Reson TC4038, 3 mm diameter). 
 
We investigated how the attached cavitation changes when the ultrasonic horn operates at different 
powers. For a much more thorough description of the study one should refer to [1]. If the power density 
was sufficient (above 280 W/cm2), similar conclusions could be drawn for all cases. Hence, only results 
at 70 W power (990 W/cm2 power density), 164 µm oscillation amplitude at 20 kHz, are shown 
(comparison between experimental results at 30 and 50W and simulations are given in Fig. 9). The 
main goal of this part of the study is to investigate the fluid parameters, which could influence or 
explain the peculiar (slow) dynamics of cavitation on the small ultrasonic horn. We tested the influence 
of: 

- Presence of gas in the liquid. Degassing the water could reduce or suppress bubble nucleation. 
- Viscosity. It could influence the intensity of the turbulence and consequently also cavitation 

inception, as the pressure can locally drop below vapour pressure inside the eddies. 
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Furthermore, damping of the sound wave and the bubble oscillation is increased with viscosity. 
- Surface tension. It could influence the critical amplitude of acoustic pressure at which cavitation 

nuclei begin to rapidly grow into bubbles.  
- Temperature. The increase of temperature leads to increase of vapour pressure and by this to the 

conditions more prone to cavitation. There will also be indirect changes of viscosity, surface 
tension and density due to the variation of the temperature (the experiments were conducted in a 
way to minimize these, indirect, effects).   

 
The main results of the experimental campaign are shown in Fig. 3, which presents the attached cavity 
size and pressure evolutions in time for different fluid parameters, and in Tab. 2 where the maximum 
size of the attached cavitation and its mean oscillation frequencies are listed according to fluid 
parameters.   
 
As can be deducted from Fig. 3 and Tab. 2, both the typical attached cavity oscillation frequency and 
the maximum volume of the cavity are almost unaffected by the fluid parameters. From the diagrams in 
Fig. 3 one can see that the evolution of the cavitation volume changes only slightly, with more obvious 
changes in the evolutions of the pressure. This is probably related to different attenuation of the signal 
[1]. 
One can conclude, on the basis of these experiments, that terms 2, 3, 6 and 7 in the Rayleigh – Plesset 
equation (Eqn. 4) can be neglected in the new cavitation model, namely temperature, (non-
condensable) gas pressure, surface tension, and viscosity. The only relevant additional part appears to 
be the second derivative (4) representing the inertial terms. 
 
Its relevance also becomes clear if we remember that the driving frequency of the horn (in the present 
case) lies at 20 kHz. From a numerical point of view this means that the time step has to be 
considerably shorter than 10-5 s. As a consequence the acceleration (term 4) cannot be disregarded, as 
the bubble will still be accelerating its growth velocity during such a short time interval (it takes 10-4 s 
or less to reach a stationary growth) [36].    
 
With the before mentioned considerations, we obtain the simplified Rayleigh-Plesset equation, which 
can be used to obtain the source term of the new model: 
 

( ) 22

2

3







− ∞∞

dt

dR
+

dt

Rd
R=

ρ

pTp
2

l

v          (5) 

 
3.3 Final form of the cavitation model 
As the source term equation includes an acceleration term d2

R/dt
2, the derivation of the velocity dR/dt 

(in Eqn. 5) is not straightforward as in other existing models [9-12]. Here we split the calculation of the 
velocity dR/dt into two parts. First we determine the acceleration: 
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After this, the velocity of bubble growth can be calculated for each iteration within a time step in a 
finite difference scheme as: 
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We calculate the bubble growth velocity at the end of a time step and then use it as a “base” velocity to 
which the acceleration term is added during iterations in the next time step. 8. The initial conditions for 
both derivatives (dR/dt and d2

R/dt
2) were set to 0. 

 
Simulations proved to be unstable since negative volume fractions of vapor could occur during the 
collapse phase. Hence an additional stability criterion had to be derived and implemented. 
 
3.3.1 Stability criterion 
The collapse velocity increases rapidly as the volume fraction approaches the zero value [36, 37]. 
Consequently the cavitation source term (Eqn. 3) would grow to a value, which would change the 
vapour volume fraction α to an unphysical (negative) value. To avoid this possibility a stability 
criterion was introduced. At the very end of the bubble collapse the time derivative term in the transport 
equation for volume fraction α (Eqn. 3) is much larger than its convective term. Hence we can neglect 
the former one and obtain  
 

( )
S

t

αρv ≈
∂

∂
            (8) 

 
Knowing that the minimum value of vapor volume fraction is 0, one can write this equation in discrete 
manner and obtain the maximum allowed collapse velocity for a certain given time step ∆t: 
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This velocity is determined at the end of each time step and is used as limiting condition in the 
calculation of the velocity in the next time step – in case of a bubble collapse, if the dR/dt from the 
model (Eqn. 7) exceeds the value of the dR/dt from Eqn. 9 the latter is used. 
 
3.4 Model constants  
Like the original model [36], the present approach requires the input of nuclei number density n0 and 
the initial nuclei size R0 - the two values define the initial local vapour volume fraction in Eqn. 3. 
According to the recommendations in [12, 38, 39] n0 was set to n0 =1012 1/m3. The size of the nuclei 
could be determined from close inspection of images just prior to the cavity growth (for example the 
first frame in Fig. 1) – it was set to R0 = 25 µm. Predictions of simulations proved immune against 
reasonable variation of the n0 and R0 values.  
 
4 Numerical simulation 
The commercial program package Ansys Fluent was used to perform the simulations. The numerical 
model uses an implicit finite volume scheme. Due to higher robustness and better convergence a 
coupled velocity-pressure coupling scheme was used. Second order upwind differentiating schemes 
were used in spatial discretization of momentum and turbulent kinetic energy equations. The Green-
Gauss Node Based method [39] was used for gradient discretization. For the interpolation of the 
pressure, the PRESTO! method [40] was employed. For the sake of higher stability a first order upwind 
discretization was chosen for calculation of the continuity and vapour volume fraction transport 
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equations. Because both phases were treated as compressible, the energy equation was used and 
discretized with a second order upwind method. For temporal discretization, a first order implicit 
formulation was used. 
 
4.1 Geometry and mesh 
Because the walls of the rectangular cuvette are relatively far from the cylindrically shaped horn tip, 
the problem can be simplified to a fully axisymmetrical case with negligible error. The computational 
domain extended over one half of the (now cylindrical) cuvette with the dimensions of 50 mm height 
and 25 mm radius, in which the horn tip of 3 mm diameter is placed vertically from top 30 mm above 
the bottom (compare Fig. 4).   
All the boundary conditions were Dirichlet type. For the walls of the couvette and the horn we used the 
no-slip boundary condition for velocity. The top of the couvette was defined as the pressure outlet 
(gauge pressure 0 Pa). 
 
The simulated horn oscillated in a sinusoidal manner at a frequency of 20 kHz, at various amplitudes, 
depending on the power. To capture the movement a dynamic mesh approach was used – the mesh 
must constantly (at each time step) be updated by smoothing and local remeshing [41]. 
 
Three mesh densities were tested and it was found that it does not influence the outcome of the 
calculation of cavitation dynamics. To check the influence of spatial discretization, a study of the 
discretization error on the basis of the Richardson extrapolation [42] was made and an error of 0.9 % 
was estimated. Results presented in the next section were calculated on a medium coarse mesh with 
9800 cells (Fig 4).  
 
It was determined that the mesh, due to very small deformation of the domain, preserves an extremely 
low value of cell equiangle skew. 
 
4.2 Equations of the flow 
To close the system of equations the software solved time dependent Reynolds-Averaged continuity 
equation, momentum equations, vapor volume fraction transport equation, the equations of the 
turbulence model and, since both phases were treated as compressible, the energy equation (to consider 
the compressibility of the liquid water the Tait equation of state [2] was used). As mentioned, a 
dynamic mesh approach was used to take into account the sinusoidal movement of the horn. The set of 
equations was therefore modified to consider the difference between the fluid and grid velocity. The 
integral form of the conservation equation for a general scalar φ (specific mass (unity) for continuity 
equation, specific momentum (velocity) for momentum equation, volume fraction for volume fraction 
equation and specific energy for the energy equation) on an arbitrary control volume, V whose 
boundary is moving can be written as: 
 

( ) ∫∫∫∫ +⋅∇Γ=⋅−+
VAA

g

V

dVSAdAduudV
dt

d
φφρφρφ

��
��

,       (10) 

 
where ρ  is the fluid density, u

�

 is the flow velocity vector, gu
�

 is the grid velocity of the moving mesh, 

Γ  is the diffusion coefficient and φS  is the source term of φ . A is used to represent the boundary of the 

control volume V. 
The equations were combined with the newly developed cavitation model, described in the previous 
section. In addition, also equations of state, which describe the relation between the pressure and the 
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liquid and vapor densities and the relations for the volume fraction and the mixture (liquid-vapour) 
density and viscosity, had to be introduced.   
The flow in the vicinity of the horn is clearly turbulent (the Reynolds number based on the horn 
diameter and maximal flow velocity lies in the range of 15000), hence a k-ε realizable model [43] was 
used, as it offers better accuracy in areas, which are specific for the flow around an ultrasonic horn 
(development of cylindrical jets, boundary layers under the influence of adverse pressure gradient, flow 
detachment and recirculation). The boundary layer influence on flow development was considered with 
the use of enhanced wall functions [44]. 
 
4.3 Convergence criteria 
The criterion for a converged time step solution was determined by observation of the static pressure at 
a point 7 mm horizontally from the tip of the horn (position of the hydrophone in the experiments). The 
value of static pressure always converged when the residuals decreased by 3 orders of the magnitude. 
Finally we have chosen a convergence criterion of 10-4 (10-8 for the energy equation) to minimize the 
iteration error, which was estimated to 0.1% [42]. Approximately 40 iterations per time step were 
needed to obtain a converged time step solution. 
 
5 Results 
Simulations with the new cavitation model were compared with experiments – namely the evolution of 
the volume of vapour structures, their topology, the pressure evolution and the mean velocity field in 
the vicinity of the horn tip were considered. In the first part (Figs. 5-8) results for the test A (Tab. 2) are 
graphically presented and commented. Since the physics of the flow and the results do not differ 
significantly between the cases, the results of other tests (B-E in Tab. 2 and additionally for two 
different ultrasonic horn powers – 30 and 50W) are given more briefly in Fig. 9.  
 
Figure 5 shows the prediction of the cavitation structure beneath the tip of the horn. The instants shown 
correspond to the ones in Fig. 1.    
 
As in the experiment (Fig. 1) the cavity firstly grows and forms a characteristic “mushroom” shape 
(between 40 and 80 µs). The maximum volume is achieved about 100 µs after the start of the growth. 
The cavity then contracts at the outer rim, while its axial size remains almost constant for another 50 
µs. The main cavity collapse occurs roughly 180 µs after the start of the cycle. A brief rebound follows, 
where a toroidally shaped cloud forms for about 20 µs (probably due to a strong toroidal vortex beneath 
the tip). During each cavitation period (about 200 µs or 5 kHz) the tip of the horn advances and retracts 
about 4 times (at 20 kHz). The same periodicity and the dynamics could also be observed during the 
experiments.  
 
A comparison between the measured and predicted cavity volume is given in Fig. 6.  
 
It is evident that the simulation accurately predicts the dynamics of the cavity volume. Some 
discrepancies do exist though – possibly due to the inability of the simulation to capture the single 
small bubble jetting (seen in Fig. 1) when the cavity is the largest (the volume of the single bubbles are 
considered in experiment but not in simulation). One can also observe a rebound of the cavity just 
before the end of the second period in Fig. 6. 
  
The small oscillations superimposed to the main volume oscillations, well visible during the time when 
the size of the cavity is close to its maximum, can be attributed to the movement of the tip of the horn, 
as their period of 50µs corresponds to the 20 kHz driving frequency. Their amplitude of approximately 
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1mm3 is roughly equal to the moving volume of the horn 

( ( ) 32 mm=mmπµm=πrh=V 1.151.5164 2
⋅⋅⋅ ). In the experimental curve this moving volume does 

not appear as it could not be resolved from the images.  
 
The measured and predicted pressure evolutions at the position indicated below and during the same 
time frame are shown in Fig. 7.  
 
At every cavity collapse a pressure wave is emitted and recorded by a hydrophone (or a monitor in the 
simulation) positioned at a distance of 7 mm from the tip of the horn. It reaches a peak amplitude of 
about 4 bar, and peak negative amplitude of -1 bar. It is evident that the frequency of the pressure peaks 
is correctly predicted. The peak pressure amplitude seems to be slightly overpredicted. This could be a 
result of the choice of the water compressibility model and the fact that in the simulation we are not 
considering the influence of inclusion of small single bubbles on attenuation of the pressure wave 
(these can be nicely seen in Fig. 1). Furthermore, contributions of non-condensable gas in the cavity - 
not considered in the simulations - might damp the acoustic emissions during its collapse.       

 

Finally also the mean measured and predicted velocity fields were compared (Fig. 8). For the case of 
the measured profile a method based on the advection diffusion equation [45, 46], which couples the 
velocity field with the field of concentrations of a passive tracer (in the present case cavitation 
bubbles), was used. One needs to bear in mind that the measurement gives the velocity of the vapour 
phase while the simulation considers a velocity in a mixed fluid – these can differ significantly [47].  

 

The periodical movement of the horn creates a flow away from the tip (downwards) near the axis of the 
horn. As the flow looses momentum it turns radially outwards, and then upwards. One can observe a 
significant toroidal vortex which forms beneath the outer rim of the tip of the horn. We believe that it is 
this vortex that initiates the rebound of the cavity at the end of its period (Fig. 5, frame at 180 µs). The 
velocity fields (measured (left) and predicted (right)) qualitatively agree reasonably. The very clear 
vorticity shown in the simulation is less pronounced in the experimental results – it can be seen a bit 
closer to the face of the horn but somewhat further away from its center. The qualitative and 
quantitative deviations probably origin from the different velocities of vapour (experiment) and 
liquid/vapour mixture (simulation).     
 
In Fig. 9 we present comparisons of measured and predicted values of characteristic attached cavitation 
bubble oscillation frequency, its maximal volume and the maximal recorded pressure for all cases (A-E 
in Tab. 2 and additional two for the same fluid properties as in test A but at a reduced power – 30 W 
(test F) and 50 W (test G)).  
 
When one compares the quantitative agreement between the measurements and simulations (Fig. 9) an 
obvious improvement can be seen when the new cavitation model is employed. Results obtained with 
existing models (results obtained by the original Schnerr – Sauer model [12] are shown for comparison 
in Fig. 9) poorly predict the characteristic parameters of cavitation in our case. Without the acceleration 
term, the existing model is unable to predict the slow cavitation dynamics – the cavity always follows 
the driving frequency (20 kHz). As a consequence the attached cavity does not grow to its correct size 
(its maximal size is in average 30 % too small compared to the experiment) and implodes at a 
significantly lower aggressiveness (about 1 bar pressure wave instead of 4 bar was continuously 
predicted).  
With the new model the values significantly improve. The characteristic cavitation frequency is very 
accurately predicted – the average discrepancy lies at only 1 %. The maximal cavitation volume is 
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predicted at somewhat worse accuracy (within 5 %). Finally about 7 % prediction accuracy was 
achieved for the maximal recorded pressure at 7 mm distance from the tip of the horn.  
 
6 Conclusions 
In our study we were concerned with the numerical simulation of a peculiar type of attached cavitation 
at an ultrasonic horn transducer tip ("acoustic supercavitation" [1]). We first evaluated several existing 
hydrodynamic cavitation models [9-12]. All of them have proven to be unable to correctly predict the 
main features of the cavitating flow in the vicinity of the horn tip – namely the attached cavity 
oscillation frequency, cavity size and pressure pulsations.  
It is common for many models to build the evaporation and condensation source terms around a much 
simplified Rayleigh – Plesset equation. Based on experiments, which are more thoroughly discussed in 
[1] and estimations of the time scales (the length of the transition to the asymptotic bubble wall 
velocity is not negligible compared to the numerical time step [12]), we concluded that the most 
commonly used simplification is too rough for cases with rapid pressure dynamics and that one should 
also include the second derivative term of the Rayleigh-Plesset equation (Eqn. 4) in the cavitation 
model. We tested the newly developed model against measurements on ultrasonic horn cavitation and 
obtained accurate results in terms of cavitation dynamics, cavity volume, pressure pulsations and 
velocity fields.   
The new model seems particularly suited for simulations of cavitating flows where the dynamics of 
pressure fluctuations is high – apart from ultrasonic horns, for example: ultrasonic baths, rapid pump 
startup [48] and in pumps operating under the POGO phenomenon [49]. Further work will show if this 
approach results in improved results in the other cases as well. 
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Figure captions 
 
Fig. 1: Two cycles of the oscillation of a large cavity at an ultrasonic horn tip of 3 mm diameter in 
water (acoustic frequency 20 kHz, recording at 100000 frames/s (only every 2nd image is shown), 
exposure 1 µs, sequence row by row from top left). Conditions are the same as for the case A in Tab. 1.  
 
Fig. 2:Simulation of cavitation on an ultrasonic horn by the original Schnerr-Sauer model [12]. The 
boundary conditions correspond to the sequence shown in Fig. 1.      
 
Fig. 3: Evolution of the size of attached cavitation and pressure for different fluid parameters. 
 
Fig. 4: Computational domain. 
 
Fig. 5: Sequence showing a simulation of cavitation on an ultrasonic horn with the new cavitation 
model for 164 µm horn oscillation amplitude at a frequency of 20 kHz (test A from Tab. 2). 
 
Fig. 6: Comparison between the predicted and measured attached cavity volumes for 164 µm horn 
oscillation amplitude at a frequency of 20 kHz (case A from Tab. 2). 
 
Fig. 7: Comparison between the predicted and measured pressure for 164 µm horn oscillation 
amplitude at a frequency of 20 kHz (case A from Tab. 2). 
 
Fig. 8: Time averaged experimental (left) and predicted (right) velocity profiles in the vicinity of the tip 
of the horn for 164 µm horn oscillation amplitude at a frequency of 20 kHz (case A from Tab. 2).. 
 
Fig. 9: Measured and predicted characteristic values of attached cavitation bubble oscillation frequency, 
maximal volume of the cavity and maximal recorded pressure for cases A-E (Tab. 2) and at 30 W (F) 
and 50W (G) power. The "original" model is Schnerr-Sauer from [12].  
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Table captions 
 
Tab. 1: Source terms of some commonly used cavitation models. 
 
Tab. 2: Maximum size of the attached cavitation structure and cavitation oscillation frequency for 
different fluid parameters. 
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Case Fluid Temp. Saturation Viscosity Surf. ten.  Mean freq. Max. vol. 
    °C % Pas N/m Hz mm3 

A H2O 23 100 0.00093 0.072 5058 8.97 
B H2O 23 50 0.00093 0.072 5085 8.58 
C H2O+SDS  23 100 0.00093 0.05 5095 8.95 
D C2H6O2 23 100 0.0169 0.048 5074 8.63 
E H2O 45 100 0.0006 0.069 5074 8.87 
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